
The Mont-Blanc prototype: An Alternative Approach for HPC Systems

Nikola Rajovic∗†, Alejandro Rico‡�, Filippo Mantovani∗, Daniel Ruiz∗†, Josep Oriol Vilarrubi∗,
Constantino Gomez∗†, Luna Backes∗, Diego Nieto∗, Harald Servat∗, Xavier Martorell∗†, Jesus Labarta∗†,

Eduard Ayguade∗†, Chris Adeniyi-Jones‡, Said Derradji§, Herve Gloaguen§, Piero Lanucara¶, Nico Sanna¶,
Jean-Francois Mehaut‖, Kevin Pouget‖, Brice Videau‖, Eric Boyer∗∗, Momme Allalen††, Axel Auweter††,

David Brayford††, Daniele Tafani††, Volker Weinberg††, Dirk Brömmel‡‡, René Halver‡‡, Jan H. Meinke‡‡,

Ramon Beivide
xi

, Mariano Benito
xi

, Enrique Vallejo
xi

, Mateo Valero∗† and Alex Ramirez
x
�

∗ Barcelona Supercomputing Center, first.last@bsc.es
† Computer Architecture Department, Universitat Politecnica de Catalunya - BarcelonaTech
‡ ARM § Bull/ATOS ¶ Cineca ‖ CNRS - Universite Grenoble Alpes - LIG ∗∗ GENCI

‡‡ Forschungszentrum Jülich GmbH †† LRZ
x

NVIDIA
xi

Universidad de Cantabria

Abstract—High-performance computing (HPC) is recognized

as one of the pillars for further progress in science, industry,

medicine, and education. Current HPC systems are being de-

veloped to overcome emerging architectural challenges in order

to reach Exascale level of performance, projected for the year

2020. The much larger embedded and mobile market allows

for rapid development of intellectual property (IP) blocks

and provides more flexibility in designing an application-

specific system-on-chip (SoC), in turn providing the possibility

in balancing performance, energy-efficiency, and cost. In the

Mont-Blanc project, we advocate for HPC systems being built

from such commodity IP blocks, currently used in embedded

and mobile SoCs.

As a first demonstrator of such an approach, we present

the Mont-Blanc prototype; the first HPC system built with

commodity SoCs, memories, and network interface cards

(NICs) from the embedded and mobile domain, and off-

the-shelf HPC networking, storage, cooling, and integration

solutions. We present the system’s architecture and evaluate

both performance and energy efficiency. Further, we compare

the system’s abilities against a production level supercomputer.

At the end, we discuss parallel scalability and estimate the

maximum scalability point of this approach across a set of

applications.

1. Introduction

The evolution of High-Performance Computing (HPC)
systems is driven by the need of reducing time-to-solution
and increasing the resolution of models and problems being
solved by a particular program. Important milestones from
the HPC system performance perspective were achieved us-
ing commodity technology. Examples are the ASCI Red and
the Roadrunner supercomputers, which broke the 1 TFLOPS
and 1 PFLOPS barriers, respectively. These systems showed

� The majority of the work was done while the author was with Barcelona

Supercomputing Center.

how commodity technology could be used to take the next
step in HPC system architecture.

Driven by a much larger market, commodity compo-
nents evolve faster than their special-purpose counterparts,
eventually achieving the same performance and eventually
surpassing or replacing them. For this reason, RISC proces-
sors displaced vector processors, and x86 displaced RISC.

Nowadays commodity is in the embedded / mobile
processor segment. Mobile processors develop fast, and are
still not at a point of diminishing performance improvements
from new designs. Furthermore, they progressively incorpo-
rate the capabilities required for HPC.

The embedded market size and endless customer re-
quirements allow for constant investments into innovative
designs, and rapid testing and adoption of new technologies.
For example, LPDDR memory technology was first intro-
duced in the mobile domain and has recently been proposed
as a memory solution for energy proportional servers [1].

The Mont-Blanc project aims at providing an alterna-
tive HPC system solution based on the current commodity
technology: mobile chips. As a demonstrator of such an
approach, the project designed, built, and set-up a 1080-
node HPC cluster made of Samsung Exynos 5250 SoCs.
The Mont-Blanc project established the following goals: to
design and deploy a sufficiently large HPC prototype system
based on the current mobile commodity technology; to port
and optimize the software stack, and enable its use for HPC;
to port and optimize a set of HPC applications to be run at
this HPC system.

Comparing the Mont-Blanc prototype to a contempo-
rary supercomputer, MareNostrum III, reveals that a single-
socket Mont-Blanc node is 9× slower than a dual-socket
MareNostrum III node, while saving up to 40% of energy.
MPI parallel applications show a 3.5× slowdown when
running with the same number of MPI ranks on both ma-
chines, while consuming 9% less energy on the Mont-Blanc
prototype on average. When targeting the same execution
time, the Mont-Blanc prototype offers 12.5% space savings.

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c©2016 IEEE 444

The contributions of this paper are:

• A detailed description of the Mont-Blanc prototype
architecture

• A thorough performance and power evaluation of the
prototype, comparing it to a Tier-0 production sys-
tem in Europe, the MareNostrum III supercomputer.

• A set of recommendations for the next-generation
HPC system built around the Mont-Blanc approach.

The rest of this paper is structured as follows. In Sec-
tion 2, we reveal the architecture of the Mont-Blanc proto-
type. In Section 3, we evaluate the performance and energy
of a Mont-Blanc node and compare it to a MareNostrum III
node. In Section 4, we present the evaluation and tuning
of the prototype’s node interconnect. In Section 5, we
evaluate the parallel scalability of our system, compare its
performance and energy efficiency against MareNostrum III,
and discuss the influence of its lossy interconnect. With
Section 6 we extrapolate parallel scalability beyond the size
of our prototype, envisioning future systems built around
the same approach. Related work is discussed in Section 7.
Finally, with Section 8 we conclude the paper.

2. The Mont-Blanc Prototype

In this section we present the architecture of the Mont-
Blanc prototype (shown in Figure 1). We highlight peculiar-
ities of each building block as we introduce them.

Figure 1: Physical view of the Mont-Blanc system.

2.1. The Mont-Blanc Compute Node

The Mont-Blanc compute node is a Server-on-Module

architecture. Figure 3 depicts the Mont-Blanc node card

Figure 2: Physical view of the Mont-Blanc blade.

(Samsung Daughter Board or SDB) and its components.
Each SDB is built around a Samsung Exynos 5250 SoC in-
tegrating two ARM Cortex-A151 CPUs @ 1.7 GHz sharing
1 MB of on-die L2 cache, and a mobile 4-core ARM Mali-
T604 GPU @ 533MHz. The SoC connects to the on-board
4 GB of LPDDR3-1600 RAM through two 32-bit memory
channels shared among the CPUs and GPU, providing a
peak memory bandwidth of 12.8 GB/s.

The node interconnect is provided by the
ASIX AS88179 USB 3.0 to 1 Gb Ethernet bridge,
and an Ethernet PHY. An external 16 GB μSD card
provides the boot-loader, OS system image, and local
scratch storage.

The node connects to the blade through a proprietary
bus using a PCI-e 4x form factor edge connector (EMB
connector).

�������	
���

��������
������
����

������
��

�� �

�!"

�������

	�
���	����������

	�
����
����

#�$$%�
&�

#�$$%�
&�

#�$$%�
&�

#�$$%�
&�

��$
����

��	�	��

Figure 3: The Mont-Blanc node block scheme (not to scale).

2.2. The Mont-Blanc Blade

Figure 4 describes the architecture of the Mont-Blanc
blade (Ethernet Mother Board, or EMB, depicted in Fig-
ure 2). The blade hosts 15 Mont-Blanc nodes which are
interconnected through an on-board 1 GbE switch fabric.
The switch provides two 10 GbE up-links. In addition, the
EMB provides management services, power consumption
monitoring of SDBs, and blade level temperature moni-
toring. The EMB enclosure is air-cooled through the fans
installed on the front side.

1. Implementation of the ARMv7-a architecture.

445

��
��

��
��

	

�
�

��
�

�������
	
����
���
���

������������

�������������

������ �������

������

������

�������������������

�������������������

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

	
����
���
���

����������
�������
 ���!�

	"#

$$
$$
$

������
%&'()*

������
% �+))*

,��

-	�' $$
$

	
��
�
���
���

,��.+/

Figure 4: The Mont-Blanc blade block scheme.

2.3. The Mont-Blanc System

The entire Mont-Blanc prototype system (shown in Fig-
ure 1) fits into two standard 42U-19′′ racks. Each Mont-
Blanc rack hosts up to four 7U Bullx chassis which in turn
integrate nine Mont-Blanc blades each. In addition, racks are
populated with two 2U 10 GbE Cisco Nexus 5596UP top-
of-the-rack (TOR) switches, one 1U prototype management
1GbE switch2, and two 2U storage nodes.

2.3.1. System interconnect. The Mont-Blanc prototype
implements two separate networks: the GbE management
network, and the 10 GbE MPI network. The management
network is out of the scope of this paper, thus we depict the
implementation of the MPI interconnect in Figure 5.

The first level of switching is provided inside the blades
using a 1 GbE switch fabric providing two 10 GbE up-links.
Switching between the blades occurs at the TOR switches
with a switching capacity of 1.92 Tbps per switch. The racks
are directly connected with four 40 GbE links.

���
����	

�������	
�
�����

��������
����������

����������
��������

�������	
�
�����

�������	
�
�����

��������
����������

����������
��������

�������	
�
�����

��������

��������
� �

��
��

�
��

��
�

��
��

�
��

��
�

��������
� �

���
����	

�������	
�
�����

��������
����������

����������
��������

�������	
�
�����

�������	
�
�����

��������
����������

����������
��������

�������	
�
�����

!

!

!

��

�!

�"

!

!

!

�#

�$

�%

!

!

!

�&

��

�'

% % %

��������

�	
����
���������

Figure 5: The Mont-Blanc system interconnect.

2.3.2. Storage. The Lustre parallel filesystem is built on a
Supermicro Storage Bridge Bay based on x86-64 architec-
ture, with a total capacity of 9.6 TB providing 2-3.5 GB/s
read/write bandwidth (depending on the disk zone). The
storage system is connected to the top-of-the-rack switches
with four 10 GbE links.

2.3.3. Cooling. Compute nodes are passively cooled using
a top-mounted heat sink, while blades provide active air-
cooling through variable speed front-mounted fans in a
temperature control loop.

2. Not visible, mounted on the back.

2.4. The Mont-Blanc Software Stack

Compilers

GNU JDK Mercurium

Scientific libraries

ATLAS LAPACK SCALAPACK FFTW
BOOST clBLAS clFFT PETSc HDF5

Performance analysis Debugger

EXTRAE Paraver Scalasca Allinea DDT

Runtime libraries

Nanos++ OpenCL OpenMPI MPICH3

Cluster management

SLURM Nagios Ganglia

Hardware support Storage

Power monitor LustreFS

Operating System

Ubuntu

Figure 6: The Mont-Blanc software stack.

The work done during the Mont-Blanc project helped to
mature the HPC software stack on the ARM architecture.
Today, working with the Mont-Blanc prototype feels like
working with any other HPC cluster.

The Mont-Blanc prototype nodes run Ubuntu 14.04.1
Linux on top of the customized Linaro Kernel version 3.11.0
which enables a user space driver for OpenCL programming
of the ARM Mali-T604 GPU. The rest of the software stack
components are shown in Figure 6.

A very relevant part of the Mont-Blanc software stack is
the OmpSs programming model [2], provided by the Mer-
curium compiler and the Nanos++ runtime. OmpSs is a task-
based programming model with explicit inter-task dataflow
that allows the runtime system to orchestrate out-of-order
execution of the tasks, selectively off-loading of tasks to
the GPU when possible, or running them on the CPU if
the GPU is busy. Applications ported to OmpSs can make
simultaneous use of the CPU and the GPU, dynamically
adapting to load imbalance situations.

2.5. Power Monitoring Infrastructure

The Mont-Blanc prototype provides a unique infrastruc-
ture for high-frequency measurements of power consump-
tion at the granularity of a single compute node, scaling to
the whole size of the prototype.

The Mont-Blanc system features a digital current and
voltage meter in the power supply rail to each SDB. An
FPGA on each EMB accesses the power sensors in each
SDB via I2C and stores the averaged values every 1,120ms
in a FIFO buffer. The Board Management Controller (BMC)
on the EMB communicates with the FPGA to collect the
power data samples from the FIFO buffer before storing
them in its DDR2 memory along with a timestamp of
the reading. User access to the data is then provided by
the BMC over the management Ethernet through a set of
custom Intelligent Platform Management Interface (IPMI)
commands.

To provide application developers with power traces of
their applications, the power measurement and acquisition
process is conveniently encapsulated and automated in a

446

TABLE 1: Mont-Blanc compute performance summary.

Compute Node

CPU GPU

Compute element 2×ARM Cortex-A15 1×ARM Mali-T604
Frequency 1.7 GHz 533 MHz
Peak performance (SP) 27.2 GFLOPS 72.5 GFLOPS
Peak performance (DP) 6.8 GFLOPS 21.3 GFLOPS
Memory (shared) 4 GB LPDDR3-800

Blade = 15×Node

Peak performance (SP) 408 GFLOPS 1.08 TFLOPS
Peak performance (DP) 102 GFLOPS 319.5 GFLOPS
Memory 60 GB

Chassis = 9×Blade

Peak performance (SP) 3.67 TFLOPS 9.79 TFLOPS
Peak performance (DP) 0.92 TFLOPS 2.88 TFLOPS
Memory 540 GB

System = 8×Chassis

Peak performance (SP) 29.38 TFLOPS 78.3 TFLOPS
Total (SP) 107.7 TFLOPS

Peak performance (DP) 7.34 TFLOPS 23 TFLOPS
Total (DP) 30.3 TFLOPS

Memory 4.32 TB

custom-made system monitoring tool. The tool is developed
with a focus on simplicity and scalability by respectively
employing MQTT [3], for lightweight transport messaging,
and Apache Cassandra, a scalable, distributed database for
storing the acquired power data along with other time-series
based monitoring data. A set of command line tools and a
special API provide users with the ability to access the raw
monitoring data or to plot and correlate information from
different data sources throughout the system.

2.6. Performance Summary

Table 1 shows the performance figures of the Mont-
Blanc prototype. The two Cortex-A15 cores provide a peak
performance of 27.2 GFLOPS in single-precision (SP) and
6.8 GFLOPS in double-precision (DP). The performance
disparity comes from the fact that the SIMD unit, code-
named NEON, only supports SP floating-point (FP) opera-
tions, thus DP FP instructions execute in a scalar unit.

The on-chip 4-core Mali-T604 GPU provides
72.5 GFLOPS SP and 21.3 GFLOPS DP [4]. The total node
performance is 99.7 GFLOPS SP and 28.1 GFLOPS DP.

Table 1 shows the peak performance at the blade, chassis
and entire system levels for CPU and GPU separately. The
whole system has a peak performance of 107.7 TFLOPS SP
and 30.3 TFLOPS DP.

Due to the 32-bit nature of the SoC architecture, each
node integrates only 4 GB of memory. The high node
integration density of 1080 nodes (2160 cores) in 56U (over
19 nodes per U) adds up to 4.32 TB of memory, and an
aggregate 13.8 TB/s memory bandwidth.

3. Compute Node Evaluation
In this section, we present a comparison between the

Samsung Exynos 5250 SoC3 used in the Mont-Blanc pro-
totype and its contemporary 8-core Intel Xeon E5-2670 4

3. Introduced in Q3 2012

4. Introduced in Q1 2012

TABLE 2: Mont-Blanc vs MareNostrum III: node perfor-
mance comparison.

Mont-Blanc MareNostrum III

Frequency [GHz] 1.7 2.6
sockets 1 2

Peak FP-64 [GFLOPS]
CPU

6.8
GPU

21.3
CPU

332.8

GPU

-n/a-

Memory BW [GB/s] 12.8 51.2
Network BW [Gb/s] 1 40
Intersocket BW [GB/s] -n/a- 32

TABLE 3: List of Mont-Blanc benchmarks

Tag Full name

2dc 2D convolution
amcd Markov Chain Monte Carlo method
dmm Dense matrix-matrix multiplication
hist Histogram calculation
ms Generic merge sort
nbody N-body calculation
3ds 3D volume stencil computation
fft One-dimensional Fast Fourier Transform
red Reduction operation
vecop Vector operation

server processor running at 2.6 GHz used in the MareNos-
trum III supercomputer [5]. A MareNostrum node is a dual-
socket implementation using DDR3-1600 memory DIMMs.
See more details in the side-by-side comparison in Table 2.

Methodology: We present and discuss both core-to-core,
and node-to-node performance as well as energy figures
when executing the Mont-Blanc benchmark suite [6](see
Table 3). We report performance (execution time) and en-
ergy differences by normalizing to that of MareNostrum. We
obtain node power using the power monitoring infrastructure
of the Mont-Blanc prototype (see Section 2.5) , and the node
energy consumption in MareNostrum provided through LSF
job manager.

3.1. Core Evaluation

In Figure 7, we present the performance comparison on
a core-to-core basis between the Mont-Blanc prototype and
MareNostrum supercomputer. This comparison using single-
threaded runs gives a sense of the performance difference
between both cores without the interference of scheduling
and synchronization effects of parallel runs.

2dc amcd dmm hist ms nbody 3ds fft red vecop gMean
0

1

2

3

4

5

6

7

8

E
xe
cu
ti
o
n
ti
m
e
n
o
rm
a
liz
ed

to
M
ar
eN
o
st
ru
m

12
.7

Mont-Blanc 1core

Figure 7: Mont-Blanc benchmarks: core-to-core perfor-
mance comparison.

Across the benchmark suite, Mont-Blanc is between 2.2
and 12.7 times slower on a per core basis. The Cortex-A15

447

2dc dmm hist nbody 3ds red vecop gMean
0

10

20

30

40

50

E
xe
cu
ti
o
n
ti
m
e
n
o
rm
a
liz
ed

to
M
ar
eN
o
st
ru
m

72
.2

83
.9

Mont-Blanc OpenMP 2

Mont-Blanc OpenCL

Mont-Blanc OmpSs+OpenCL

(a) performance

2dc dmm hist nbody 3ds red vecop gMean
−100

−50

0

50

100

150

200

250

300

R
el
a
ti
ve
en
er
g
y
d
iff
er
en
ce

to
M
ar
eN
o
st
ru
m
[%
]

49
6

57
9

Mont-Blanc OpenMP 2

Mont-Blanc OpenCL

Mont-Blanc OmpSs+OpenCL

(b) energy

Figure 8: Mont-Blanc benchmarks: node-to-node a) perfor-
mance and b) energy comparison.

core underperforms the Intel Sandy Bridge mainly due to:
lack of SIMD DP FP extensions (vectorization observed
in dmm, 3ds, fft, red, vecop); lower per socket memory
bandwidth (12.8 vs 51.2 GB/s); and limited memory sub-
system resources geared towards low power5 (more off-chip
accesses observed in 2dc, amcd, hist, nbody). On average,
across the entire suite, a Mont-Blanc processor core is 4.3x
slower than that of MareNostrum.

3.2. Node Evaluation

In Figure 8, we compare performance and energy con-
sumption on a node-to-node basis between the Mont-Blanc
prototype and the MareNostrum III supercomputer.

Given the characteristics of the Mont-Blanc SoC and its
software stack, we evaluate three different computing sce-
narios: homogeneous CPU computing with OpenMP (blue
bars), heterogeneous CPU + GPU with OpenCL (red bars),
and heterogeneous with OmpSs (violet bars).

Comparing CPU-only computing, a dual-core Mont-
Blanc node is on average 18x slower than a 16-core
MareNostrum node. When using OpenCL to off-load all
compute tasks to the GPU, Mont-Blanc is 14x slower than
MareNostrum. Finally, using OmpSs to efficiently offload
computation to both the GPU and the CPU, we significantly
reduce the gap to only 9x across the benchmark suite.

Energy-wise, when using only CPUs, a Mont-Blanc
node consumes 7% more energy compared to a MareNos-
trum node. As we close the performance gap, Mont-Blanc
nodes become more energy efficient on average: from con-
suming 10% less energy when using only GPU, to consum-
ing 40% less energy when using both GPU and CPU cores.

5. Intel Xeon E5-2670 features 20 MB of a third level cache.

0 200 400 600 800 1000 1200 1400 1600 1800

Runtime [s]

5

6

7

8

9

10

11

12

P
o
w
er
[W
]

Compute resources

1 core
2 cores
GPU
GPU + 1 core

Figure 9: Power profile of different compute to hardware
mappings for 3D-stencil computation. Note: markers are
only to distinguish lines, not actual sampling points.

Our results show that, when using the embedded GPU,
Mont-Blanc can be significantly more energy-efficient than a
homogeneous cluster like MareNostrum III. However, Mont-
Blanc needs applications to scale to 10-15x more nodes in
order to match performance, and interconnection network
performance is critical for that.

3.3. Node Power Profiling

Energy has two dimensions: power and time. Execu-
tion time depends on how the application performs on the
underlying architecture. Power depends on how much the
application stresses compute resources, processor physical
implementation and SoC power management. The power
monitoring infrastructure in the Mont-Blanc prototype (Sec-
tion 2.5) helps the user to reason about both factors. Com-
paring the power of different mappings6 (CPU, GPU, or
CPU+GPU), the user can estimate the speed-up required to
compensate the power differences and run the system at the
best energy efficiency point.

Figure 9 shows a high sampling rate power profile of
one Mont-Blanc node for different mappings of the execu-
tion of the 3D-stencil benchmark. The different mappings
include one CPU core (sequential), dual core (OpenMP),
GPU (OpenCL), and GPU + 1 CPU (OmpSs).

Node idle power is 5.3W. This includes the static power
of all components given that frequency scaling is disabled
for benchmarking purposes. The average power consump-
tion when running on one and two CPU cores is 7.8W and
9.5W respectively. This includes the power consumption of
the SoC, memory subsystem and network interface.

Node power when using the GPU and the GPU + 1
CPU is 8.8 and 11W, respectively. When running on the
GPU alone, one of the cores is still active as a helper
thread that synchronously launches kernels to the GPU and
therefore blocks until they complete. When running OmpSs
on the GPU + 1 CPU, one of the cores is the GPU helper
and the other one runs a worker thread and contributes to
computation, thus adding that extra power.

Our results show that the extra power required by OmpSs
because of adding one CPU core to GPU computation could
outweight the performance improvement, in turn leading to a

6. Counting only elements contributing to the computing.

448

higher energy-to-solution in the 3D stencil (3ds) benchmark
(as we show in Figure 8).

From our results with other benchmarks, node power
varies across different workloads although it remains in the
same range seen in Figure 9. The maximum power seen
for executions with two CPU cores is 14W, and 13.7W for
executions with GPU plus one CPU core.

This shows the relevance of the power measurement
infrastructure in the Mont-Blanc prototype. It allows us to
explain where and how the power is being spent, even at
high frequencies. The ability to visualize power over time
is even more valuable for applications showing different
phases that may benefit of different CPU-GPU mappings.
This way, the user can identify the best mapping for each
application phase.

In systems without a power profile (which just provide
the total job energy consumption), such analysis requires a
less accurate and time-consuming trial-and-error approach
looking at power deltas over multiple runs of different
configurations.

4. Interconnection Network Tuning and Eval-

uation

In this section, we quantify the latency and bandwidth of
the Mont-Blanc interconnection network. Since the Mont-
Blanc interconnect is implemented using a lossy Ethernet
technology, it is of a paramount importance that every layer
is properly tuned. Thus we discuss the improvements in
different parts of the interconnect stack which in turn affect
the overall interconnect performance.

In Figure 10, we present both bandwidth and latency
measurements obtained from the Mont-Blanc prototype us-
ing the Intel MPI PingPong benchmark. We present four
curves per graph, each corresponding to incremental im-
provements on the node network interface.

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

Message size [bytes]

0

20

40

60

80

100

B
a
n
d
w
id
th
[M
B
/
s]

Initial

Updated driver

Updated driver + OpenMX

Updated driver + patched kernel

(a) Bandwitdh

20 21 22 23 24 25 26 27 28 29 210

Message size [bytes]

0

50

100

150

200

L
a
te
n
cy
[u
S
]

Initial

Updated driver

Updated driver + OpenMX

Updated driver + patched kernel

(b) Latency

Figure 10: Inter-node bandwidth and latency of the Mont-
Blanc prototype.

TABLE 4: MPI applications used for scalability evaluation.

Application Domain

BigDFT [11], [12] Electronic Structure
BQCD [13] Quantum Chromodynamics
MP2C [14] Multi-Particle Collision Dynamics
QuantumESPRESSO [15] Electronic Structure and Materials Modeling
SMMP [16], [17], [18] Molecular Thermodynamics
Alya [19], [20] Biomedical Mechanics
COMD [21] Proxy for Molecular Dynamics
LULESH [22], [23] Proxy for Hydrodynamics
miniFE [24] Proxy for Finite Element Method

After the initial deployment of the Mont-Blanc prototype
we measured the achievable MPI throughput and latency
of 80 MB/s and 156 μs respectively (blue line, solid with
circles). The results were obtained using the NIC driver built
into the Linux Kernel.

We updated the driver using a proprietary version pro-
vided by the USB-to-GbE bridge maker7, achieving sig-
nificant improvements in both throughput and latency for
small messages: up to 3.4x better throughput for messages
under 64KB, and only 88μs latency for zero-sized messages
(red line, dashed). However, throughput for larger messages
stayed the same as in the initial configuration. The new
driver provides a configurable wait interval between the con-
secutive bulk transfers on the USB bus, which we reduced
to the bare minimum.

Additionally, we did a back-port of a Linux Kernel
patch [7] which improves throughput in USBNET driver for
USB 3.0 compliant devices. This patch improved throughput
for messages larger than 64 KB, achieving a maximum
throughput of 100 MB/s (green line, solid with squares).
For reference purposes, the same benchmark run on a server
class x86 86 system (with integrated 1 GbE NIC) achieves
112.5 MB/s and a 46.5μs latency [8], so we achieve 89% of
the potential bandwidth, but our latency is still 1.9x higher.

Most of the ping-pong latency is due to the TCP/IP
protocol stack, which runs on the ARM Cortex-A15 CPU.
We also deployed the Open-MX [9] protocol stack (a free
implementation of the Myricom protocol) to replace TCP/IP.
The lighter-weight protocol reduced latency for small mes-
sages to 65 μs, which also increases bandwidth for messages
under 32 KB. However, it degrades the throughput for the
larger message sizes (violet line, dotted).

Since most of our MPI applications will exchange large
messages, we prefer to optimize bandwidth over latency and
select the proprietary driver + patched USBNET kernel for
the stable network configuration of the prototype.

5. Overall System Evaluation

In this section, we evaluate the Mont-Blanc cluster using
full-scale, production MPI applications, as listed in Table 4,
plus three reference mini-apps used by US DOE National
labs [10]. All test applications use OpenMPI, and run on
the CPU only.

7. ASIX chip AX88179

449

1 10 100 1000 2000

MPI ranks

100

101

102

103

S
ca
la
b
ili
ty

BQCD
ALYA
BigDFT
SMMP
COMD
LULESH
QE
miniFE
ideal

(a) Strong scaling.

1 10 100 1000 2000

MPI ranks

0.0

0.2

0.4

0.6

0.8

1.0

P
ar
a
lle
l
effi
ci
en
cy

BQCD
ALYA
BigDFT
SMMP
COMD
LULESH
QE
miniFE

(b) Strong efficiency.

1 10 100 1000 2000

MPI ranks

100

101

102

103

S
ca
la
b
ili
ty

MP2C
SMMP
COMD
LULESH
QE
miniFE
ideal

(c) Weak scaling.

1 10 100 1000 2000

MPI ranks

0.0

0.2

0.4

0.6

0.8

1.0

P
ar
a
lle
l
effi
ci
en
cy

MP2C
SMMP
COMD
LULESH
QE
miniFE

(d) Weak efficiency.

Figure 11: Scalability and parallel efficiency of MPI appli-
cations on the Mont-Blanc prototype. Two MPI ranks per
node.

5.1. Application scalability

In Section 3.2, we show that a Mont-Blanc node is 18x
slower than a MareNostrum-III node when using only the
CPU cores. This means we have to be able to linearly scale a
workload to 18x more compute nodes to achieve equivalent
performance.

In Figure 11, we show both strong and weak scaling
figures for MPI applications on the Mont-Blanc prototype.
Each graph is accompanied with the corresponding parallel
efficiency graph to provide more details about the appli-
cation’s scalability. Note that 16 Mont-Blanc nodes already
span 2 EMB blades, and 32 nodes span 3 blades. Also, most
applications had their baseline run with >1 node due to the
4GB/node DRAM limitation.

Strong scaling for SMMP quickly degrades starting at 32
nodes. Parallel efficiency drops to 50%, and performance
flattens, and even degrades at 512 nodes. BQCD and QE
also exhibit quick strong scaling degradation, but still run at
>50% efficiency on 64 nodes. The rest of the applications
scale linearly to hundreds of nodes, with 4 of them still
running at >50% efficiency at the full scale of the system.

Our results show that it is reasonable to scale applica-
tions to 16 nodes to compensate for the difference with a
MareNostrum III node. However, not all applications will
scale further to compensate for multiple MareNostrum III
nodes.

Weak scaling results are much better. Most of the ap-
plications still run at >70% efficiency at the maximum
problem size. Notably, CoMD and SMMP run at >90%
efficiency, but QE and MP2C degrade to 60% efficiency.

Detailed performance analysis reveals the causes for lack
of scalability: besides the low bandwidth / high latency GbE
network, the system suffers from lost packets in the inter-
connect, each incurring at least one Retransmission Time
Out (RTO), and load imbalance introduced by scheduler
preemptions.

5.1.1. Lost packets. In Figure 12, we show an execution
profile for the real CoMD run, and a simulated run (using
Dimemas [25]) eliminating network retransmissions. Both
traces have the same time scale.

(a) Packet loss in place.

(b) No packet loss.

Figure 12: Illustration of the packet loss effect on MPI
parallel applications: a) trace with, and b) without packet
loss. The X axis represents time, the Y axis represents the
process number.

The simulated profile shows that the native execution
suffered from a lot of lost packets (most application’s com-
munication phases suffer from at least 1 retransmission),
reducing performance by 1.47x. This is of course application
dependent, and depends on the communication patterns,
message sizes, volume of communication, etc.

Further analysis of the duration of MPI send operations
shows that CoMD experiences multiple retransmissions per
packet, with and average MPI send duration of 158ms
(compared to 50ms optimum), and often reaching 400ms.

Figure 13a shows the performance degradation as a
function of how many nodes experience a retransmission

450

0 5 10 15 20 25 30 35

nodes experiencing retransmission

0

20

40

60

80

100

120

140

P
er
fo
rm
a
n
ce
d
eg
ra
d
a
ti
o
n
[%
]

RTO duration
5 ms

10 ms

50 ms

100 ms

200 ms

400 ms

(a)

0 5 10 15 20 25 30 35 40 45

[%] Probability of retransmission per send

0

20

40

60

80

100

P
er
fo
rm
a
n
ce
d
eg
ra
d
a
ti
o
n
[%
]

RTO duration
5 ms

10 ms

50 ms

100 ms

200 ms

400 ms

(b)

Figure 13: Performance degradation due to retransmissions:
a) every message is affected for selected nodes; b) random
messages are affected.

penalty on every message they send. The results show that
the penalty is linear with respect to the retransmission delay.
But more important, the results show that as soon as one
node has to retransmit, the whole applications pays almost
the full penalty.

Figure 13b shows the performance degradation as a
function of how many messages need to be retransmitted
(by any node). The results show that the penalty is linear
with the retransmission delay and the retransmission prob-
ability. Both results combined indicate that it is important
to avoid retransmissions in the whole system, or to cluster
retransmissions in time, because as soon as one node has
to retransmit, it does not matter if others also have to
retransmit. For example, a glitch in a switch that causes
all nodes connected to it to retransmit would have a similar
penalty to a glitch in the NIC of one of the nodes, forcing
it alone to retransmit.

To minimize the penalty of retransmissions, we reduce
the RTOmin parameter in the TCP/IP stack from the default
200ms to 5ms (the lowest possible in our system). While
the lowering of RTOmin parameter reduces retransmission
penalties, it would be desirable implementing Retransmis-
sion Early Detection (RED) to reduce the effects of retrans-
missions. However, packet loss does not exclusively happen
at switch buffers, but we also observed nodes can drop
packets. In addition, our blade switches which forward most
of the network traffic do not support Explicit Congestion
Notification (ECN) markings, thus not being able to control
transmission rates.

5.1.2. Pre-emptions. Figure 14 shows a histogram of the
duration of computational phases in the real CoMD exe-
cution. The gradient color shows the total time spent in
computation phase of a given duration (green/light is low,
blue/dark is high).

5.0 270.0 400.0 500.0

Duration [ms]

0001

0256

0512

0768

1080

P
ro
ce
ss
n
u
m
b
er

Figure 14: 2D Histogram of computational phases dura-
tion. X axis represents bins of durations, Y axis represents
process number. Gradient coloring: green-blue. Coloring
function: logarithmic.

The figure shows two main regions of 5ms and 270ms
durations. We match the 5ms regions to the TCP/IP re-
transmissions (matching the 5ms RTO setting, and confirm-
ing that many processes suffer retransmissions). Then, the
remaining time is spent in 270ms regions, matching the
duration of one inner iteration of the application. Beyond
the 270ms boundary, we identify a set of outliers taking
significantly more time (marked with red polygons).

Checking the IPC of these computation phases, we con-
firm that the divergence in execution time is not related to
load imbalance in the application. There are external factors
introducing this variation. We attribute them to scheduler
preemptions, and from now on treat them as OS noise in
discussions to come.

Further simulations of different noise injection frequen-
cies and noise duration (graph not shown) indicate that
the performance impact of OS noise is linear with the
probability of noise being injected, and the ratio for the noise
duration to the computational burst. That is, applications
with short computational bursts are more prone to suffer
OS noise performance degradation than applications with
long computational bursts.

5.2. Comparison with traditional HPC

Figure 15 shows a comparison between Mont-Blanc and
MareNostrun III when using the same number of MPI ranks
(same number of cores). As a reference, we remind the
reader of the node performance comparison of both systems
in Table 2. Since applications are not completely malleable
in the number of MPI ranks they can use, the reported
number of cores is different for each application, ranging
from 257 to 1536.

Our results show that Mont-Blanc is 3.5x slower on
average (matching the Mont-Blanc benchmarks evaluation
in Section 3.1), and requires 9% less energy to run the ap-
plications. However, none of the applications is optimized to
use the GPU or OmpSs. Following the results in Section 3,
we would expect Mont-Blanc to result in better energy
efficiency once the GPU is used alongside the CPU.

Table 5 shows a comparison of the Mont-Blanc proto-
type and MareNostrum III when aiming to equalize their
execution time. For this experiment we exercise the strong-
scaling capability of applications on the Mont-Blanc proto-

451

SMMP
1024

MP2C
512

ALYA
1500

COSMO
257

COMD
1331

LULESH
1331

MINIFE
1536

gMean
0

1

2

3

4

5

E
xe
cu
ti
o
n
ti
m
e
n
o
rm
a
liz
ed

to
M
ar
eN
o
st
ru
m

4.06

1.43

4.59 4.70

3.57
3.86

3.26
3.44

(a) performance

SMMP
1024

MP2C
512

ALYA
1500

COSMO
257

COMD
1331

LULESH
1331

MINIFE
1536

gMean
−35

−30

−25

−20

−15

−10

−5

0

5

10

R
el
a
ti
ve
en
er
g
y
d
iff
er
en
ce

to
M
ar
eN
o
st
ru
m
[%
]

0.39

-30.59

0.01

7.16
8.92

-29.83

-10.81
-9.20

(b) energy

Figure 15: Mont-Blanc vs MareNostrum III: a) performance
and b) energy comparison for a fixed number of MPI ranks.
In both cases lower is better for Mont-Blanc.

TABLE 5: Mont-Blanc vs MareNostrum III: same input,
same execution time.

CoMD miniFE

MNa MBb MN MB

MPI ranks 64 240 64 224
Execution time [s] 70.72 68.05 71.66 72.19
Avg. power [W] 992 1083 1065 1034
Energy [Wh] 195 205 212 207
rack units 8 7 8 7
a MareNostrum III
b Mont-Blanc

type, such that we keep input set constant and increase the
number of MPI ranks to get the same execution time on
MareNostrum III with 64 MPI ranks (4 nodes).

Our results show that Mont-Blanc needs 3.5–3.75 more
MPI ranks to match the MareNostrum III execution time.
This is consistent with the 3.5x slowdown observed for
constant number of MPI ranks, and shows similar scalability
on both systems. In terms of energy consumption, both
systems consume approximately the same amount of energy.
Regarding rack space, Mont-Blanc requires 7 rack units
(1 BullX chassis, 9 blades x 15 nodes, 270 cores), while
MareNostrum III requires 8 rack units (4 2U nodes).

We conclude that, when using only the CPUs, Mont-
Blanc and MareNostrum III are equally energy efficient,
with Mont-Blanc having slightly higher integration density.

6. Scalability Projection
The results in Section 5 show that the scalability of

the Mont-Blanc prototype is affected by the choice of node
interconnect technology (Ethernet via USB), and potential
load imbalance (introduced by the system, or intrinsic to
the application). Further, in Section 5.2, we reveal a need
for good parallel scalability to compensate for lower per
node performance compared against the MareNostrum III

supercomputer. These issues conceal the potential of the
Mont-Blanc approach at scale.

To unveil the scalability of the prototype architecture
to larger systems, we employ a state-of-the-art modeling
methodology [26], [27] that allows us to project the scal-
ability of the current deployment once certain issues have
been fixed.

To validate our hypothesis about factors preventing ap-
plications to scale, we simulate weak scheduling scenarios
where we have removed network retransmissions, OS pre-
emptions, and improved load balance in the application. We
remove retransmissions by having the Dimemas simulator
assume that messages are always delivered. We remove
OS preemptions by recomputing the CPU burst durations
using the cycle counter (multiplying by the cycle time).
Since the cycle counter is virtualized, it does not count
while the application is preempted. To simulate a better load
balance, we evenly redistribute the instruction count in a
computation phase across all the MPI ranks, and compute
the burst duration using the average IPC for the compute
phase. Finally, we also simulate an ideal network (lossless,
zero latency, infinite bandwidth) to determine if a better
(hardware-supported) network would improve the system.

Figure 16 shows the results. The baseline setup (blue
curve) shows that none of the 3 simulated applications scale
beyond 100K MPI ranks with an efficiency over 50%. If
we consider that the whole MareNostrum III system has
3,056 nodes (48.9K processors), and that Mont-Blanc is
3.5x slower at the same number of MPI ranks, a Mont-
Blanc system with 50K nodes would be 1.75x slower
than MareNostrum III, consume the same energy (but less
power), and use 12.5% less space.

However, just removing the network packet loss (red
line, triangle) already shows a significant improvement for
CoMD, now scaling well to 30K processes and still im-
proving performance up to 100K processes. LULESH and
miniFE do not seem to be heavily affected by the lossy
network.

When we eliminate both the retransmissions, and the OS
preemptions (purple line, circle), CoMD does not exhibit
a significant improvement. It is clear that its scalability
was dominated by the retransmissions. However, LULESH
and miniFE show some improvement, that indicates that
serialization introduced by OS noise was causing significant
damage.

If we go one step further, and look at the ideal network
simulations (orange line), we observe that none of the three
applications is limited by network performance (after we
remove the retransmissions and OS noise). At this point, we
have obtained a scalability improvement of 7x for CoMD,
1.2x for LULESH, and 1.1x for miniFE, most of it due to
using a lossless network.

Further analysis reveals that load imbalance is the
biggest issue affecting scalability of the prototype (green
line, diamond). Improving load balance has a visible impact
on all three applications, with LULESH and miniFE being
the most affected (notably, the two apps that were insensitive
to the network performance).

452

101 102 103 104 105 106

Processes

101

102

103

104

105
S
ca
la
b
ili
ty

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(a) CoMD scalability.

101 102 103 104 105 106

Processes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ar
a
lle
l
effi
ci
en
cy

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(b) CoMD efficiency.

101 102 103 104 105 106

Processes

100

101

102

103

104

105

S
ca
la
b
ili
ty

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(c) LULESH scalability

101 102 103 104 105 106

Processes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ar
a
lle
l
effi
ci
en
cy

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(d) LULESH efficiency.

101 102 103 104 105 106

Processes

100

101

102

103

104

105

S
ca
la
b
ili
ty

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(e) miniFE scalability

101 102 103 104 105 106

Processes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
P
ar
a
lle
l
effi
ci
en
cy

Original

No RTO

No RTO, no noise

No RTO, LB filter

No RTO, no noise, ideal network

(f) miniFE efficiency.

Figure 16: Measured and simulated scalability and parallel efficiency. Simulated configurations are as follows: � - w/o
retransmissions; � - w/o retransmissions and preemptions; � - w/o retransmissions + balanced load; � - w/o retransmissions,
preemptions,and ideal network parameters.

Improving the load balance in the application is beyond
the capabilities of the hardware, and while it will affect
Mont-Blanc systems and traditional systems like MareNos-
trum III in a similar way, Mont-Blanc needs to scale to a
higher number of processes to compensate for the slower
compute nodes, making it a most critical aspect of applica-
tion development.

7. Related work
A clear example of how commodity technology can

bring a breakthrough in HPC systems architecture is the
ASCI Red supercomputer [28]. The first top-tier supercom-
puter, breaking TFLOPS barrier, built with commodity x86
processors - namely 7,246 Intel Pentium Pro processors.
With ASCI Red, a new era of HPC systems built with
commodity PC processors began.

The three generations of the BlueGene family of su-
percomputers [29], [30], [31], first introduced in 2004,
exploited a new approach for energy-efficient HPC. The
BlueGene processors were based on IBM cores used in

the embedded market segment and extended with powerful
floating-point units with SIMD capabilities. However, sys-
tem software and interconnection network were still HPC-
specific.

Further prototype clusters built with low-power
commodity processors include GreenDestiny [32] and
MegaProto [33] built with Transmeta Crusoe, FAWN[34]
built with Intel Atom, and the Apple TV cluster [35], the
first small-scale 4-node cluster built with ARM Cortex-A8
processors .

The Tibidabo cluster prototype, deployed in 2011, was
the first large-scale HPC cluster based on mobile proces-
sors [36], featuring 256 nodes of dual-core ARM Cortex-
A9 processors. It was the first ARM-based cluster with a
full HPC software stack including cluster management, job
scheduler, scientific libraries and HPC performance analysis
tools. The ARM Cortex-A9 was the first mobile processor
with a floating-point unit allowing for single-cycle double-
precision operations. Tibidabo also demonstrated a case for
scale-out parallel processing with real scientific applications

453

on mobile processors.
There have been multiple SoCs and commercial solu-

tions using embedded processors and targeting server mar-
ket: the Calxeda EnergyCore ECX-1000, AMD Opteron
A1100 are ARM based, while the AMD SeaMicro
SM10000-64 and the Quanta Computer S900-X31A are
based on the Intel Atom. All extend the embedded multicore
with high bandwidth networks (10GbE) and ECC memory
protection.

Other companies have developed custom processors
based on the ARMv8 architecture. Applied Micro (APM) X-
Gene [37] is a server-class SoC with eight 64-bit ARMv8
cores and four 10 GbE links. Cavium, with large experi-
ence in networking processors, designed ThunderX [38],
another server-class SoC with 48 ARMv8 cores and mul-
tiple 10/40GbE interfaces. Qualcomm and Phytium also
announced ARMv8 server SoCs with 24 [39] and 64 [40]
cores, respectively. Some successful deployments of some
of these SoCs are already in place. CERN has published a
comparison of APM X-Gene compared to Intel Xeon and
IBM Power8 chips [41]. PayPal has deployed HP Moonshot
servers with APM X-Gene processors claiming half the
price, one seventh of the power consumption and 10x more
nodes per rack compared to their traditional data center
infrastructure [42].

These efforts, however, target the server market and there
are still no large demonstrators of such mobile-technology-
based processors for HPC. The Mont-Blanc prototype is
thus the first demonstrator of an HPC cluster with full
HPC software stack running real scientific applications,
commodity networking, and standard system integration.
Our experiments demonstrate the feasibility of the proposed
alternative approach, assess system software maturity and
project its scalability at larger scale.

At the ISC’16 conference, Fujitsu announced their plans
to produce a processor for the Post-K Exascale Supercom-
puter based on their own microarchitecture implementation
of ARMv8 [43]. This supports our approach of using com-
modity technology deployed in the mobile and embedded
markets, in this case the ARMv8 architecture, for HPC.

8. Conclusions
In this paper, we have described the architecture of

the Mont-Blanc prototype in detail, and compared it to
a production supercomputer. Our results show that Mont-
Blanc is 4x slower than MareNostrum III on the same
number of MPI processes, however applications can weakly
scale to 4x more nodes to compensate for that, and still
run in approximately the same time and same energy. Since
applications must scale to a higher number of nodes, load
balancing is a critical design issue for the applications. Load
imbalance, including that introduced by retransmissions,
could be improved using MPI+OpenMPI and a runtime
dynamic load balancing method [44], which detects idle
cores finishing early and assigns them a part of the work
of the core which suffered retransmission timeout.

Cost savings due to use of commodity embedded SoCs
in Mont-Blanc is impossible to evaluate at this point. The

Mont-Blanc prototype is dominated by Non-recurring engi-
neering (NRE) costs, while the cost of MareNostrum III is
the result of a negotiation and a competitive bid.

However, we do not necessarily advocate for using off-
the-shelf mobile processors like the Samsung Exynos 5250,
just like we do not use off-the-shelf desktop Intel Core
i7 cores for MareNostrum III. We advocate for building
workload-specific SoCs based on the IP developed for the
embedded and mobile segments, adding the missing features
required by HPC, such as a lossless network (as indicated
by our results in Section 6), ECC memory protection, and
the set of accelerators that the workload will exploit. Just
like the Intel Xeon used in MareNostrum III builds on the
desktop Intel Core i7 Sandy Bridge processor.

From the time when Mont-Blanc specifications were
frozen, there have been many developments in the embedded
computing space: increased multicore counts (4 and 8 cores
per SoC), 64-bit ARM processors (Cortex-A72 and A57),
CUDA capable embedded GPUs (NVIDIA Tegra K1 and
X1 SoCs), and on-chip PCIe controllers are all available.

Our projections simulating CoMD, LULESH, and
miniFE on an upgrade of the Samsung Exynos 5250 dual-
core Cortex-A15 @ 1.7 GHz to the NVIDIA Tegra X1 quad-
core Cortex-A57 @ 1.9 GHz show a 1.6-1.7× performance
improvement while still relying only on the CPUs.

Based on our analysis in this paper, a next-generation
Mont-Blanc system should have a lossless interconnection
network, and a higher per-node core count to better amortize
shared infrastructure costs such as cooling and power supply.
Then, the burden falls on the applications having to fully
utilize the SoC resources, such as the embedded GPU8,
and focus on load balancing to scale to a higher number
of lower-performance nodes. Under these conditions, Mont-
Blanc type systems would offer equivalent performance
to contemporary systems, while saving 40% energy, and
achieving higher integration density.

Acknowledgments
The authors would like to thank the anonymous review-

ers for their comments. This project and the research leading
to these results was supported by the Mont-Blanc project
(European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement no 288777), the
Spanish Ministry of Science and Technology through Com-

putacion de Altas Prestaciones (CICYT) VI (TIN2012-
34557), and the Spanish Government through Programa

Severo Ochoa (SEV-2011-0067).

References

[1] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periy-
athambi, and M. Horowitz, “Towards energy-proportional datacenter
memory with mobile DRAM,” in ACM SIGARCH Computer Archi-

tecture News, vol. 40, no. 3. IEEE Computer Society, 2012, pp.
37–48.

8. The use of OpenCL for HPC code acceleration has not ramped up
since 2012 when the ARM Mali GPU was selected. CUDA and OpenMP
with SIMD annotations seem to be the preferred way to use HPC acceler-
ators today.

454

[2] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell et al.,
“Ompss: a proposal for programming heterogeneous multi-core archi-
tectures,” Parallel Processing Letters, vol. 21, no. 02, pp. 173–193,
2011.

[3] “The MQTT Protocol,” http://mqtt.org, 2014.
[4] “ARM Connected Community Forums,” https://community.arm.com/

message/18218, 4 2014.
[5] Barcelona Supercomputing Center, “MareNostrum III (2013) Sys-

tem Architecture,” https://www.bsc.es/marenostrum-support-services/
mn3.

[6] N. Rajovic, A. Rico, J. Vipond, I. Gelado, N. Puzovic, and
A. Ramirez, “Experiences with mobile processors for energy efficient
HPC,” in Proceedings of the Conference on Design, Automation and

Test in Europe. EDA Consortium, 2013, pp. 464–468.
[7] Ming Lei, “USBNET: increase max rx/tx qlen for improving

USB3 throuput,” https://github.com/torvalds/linux/commit/
452c447a497dce3c9faeb9ac7f2e1ff39232876b, 2013.

[8] S. N. Kandadio and X. He, “Performance of HPC Applications
over Infiniband, 10 Gb and 1 Gb Ethernet,” http://www.chelsio.com/
assetlibrary/whitepapers/HPC-APPS-PERF-IBM.pdf.

[9] B. Goglin, “Design and implementation of Open-MX: High-
performance message passing over generic Ethernet hardware,” in
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Inter-

national Symposium on. IEEE, 2008, pp. 1–7.
[10] “Coral collaboration benchmark codes,” https://asc.llnl.gov/

CORAL-benchmarks/, 2013.
[11] “The BigDFT Scientific Application,” http://bigdft.org/, 2015.
[12] L. Genovese, B. Videau, M. Ospici, T. Deutsch, S. Goedecker, and J.-

F. Méhaut, “Daubechies Wavelets for High Performance Electronic
Structure Calculations: the BigDFT Project.” in Compte-Rendu de

l’Académie des Sciences, Calcul Intensif. Académie des Sciences,
2010.

[13] Y. Nakamura and H. Stüben, “BQCD-Berlin quantum chromodynam-
ics program,” arXiv preprint arXiv:1011.0199, 2010.

[14] G. Sutmann, L. Westphal, and M. Bolten, “Particle based
simulations of complex systems with mp2c : Hydrodynamics and
electrostatics,” AIP Conference Proceedings, vol. 1281, no. 1,
pp. 1768–1772, 2010. [Online]. Available: http://scitation.aip.org/
content/aip/proceeding/aipcp/10.1063/1.3498216

[15] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al.,
“QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials,” Journal of Physics:

Condensed Matter, vol. 21, no. 39, p. 395502, 2009. [Online].
Available: http://stacks.iop.org/0953-8984/21/i=39/a=395502

[16] F. Eisenmenger, U. H. E. Hansmann, S. Hayryan, and C.-K. Hu,
“[SMMP] A modern package for simulation of proteins,” Computer

Physics Communications, vol. 138, no. 2, pp. 192–212, 2001.
[17] ——, “An enhanced version of SMMP—open-source software pack-

age for simulation of proteins,” Computer Physics Communications,
vol. 174, no. 5, pp. 422–429, 2006.

[18] J. H. Meinke, S. Mohanty, F. Eisenmenger, and U. H. E. Hansmann,
“[SMMP] v. 3.0—Simulating proteins and protein interactions in
Python and Fortran,” Computer Physics Communications, vol. 178,
no. 6, pp. 459–470, 2008.

[19] M. Vazquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra
et al., “Alya: towards exascale for engineering simulation codes,”
arXiv preprint arXiv:1404.4881, 2014.

[20] M. Vázquez, R. Arı́s, J. Aguado-Sierra, G. Houzeaux, A. Santiago
et al., Selected Topics of Computational and Experimental Fluid

Mechanics. Cham: Springer International Publishing, 2015, ch. Alya
Red CCM: HPC-Based Cardiac Computational Modelling, pp. 189–
207.

[21] ExMatEx, “Comd proxy application.”
[22] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”

Tech. Rep. LLNL-TR-641973, August 2013.
[23] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen et al.,

“Exploring traditional and emerging parallel programming models
using a proxy application,” in 27th IEEE International Parallel & Dis-

tributed Processing Symposium (IEEE IPDPS 2013), Boston, USA,
May 2013.

[24] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring,
H. C. Edwards et al., “Improving performance via mini-applications,”

Sandia National Laboratories, Tech. Rep. SAND2009-5574, vol. 3,
2009.

[25] R. M. Badia, J. Labarta, J. Gimenez, and F. Escale, “Dimemas: Pre-
dicting mpi applications behavior in grid environments,” in Workshop

on Grid Applications and Programming Tools (GGF8), vol. 86, 2003,
pp. 52–62.

[26] M. Casas, R. M. Badia, and J. Labarta, “Automatic analysis of
speedup of MPI applications,” in Proceedings of the 22nd Annual

International Conference on Supercomputing, ICS 2008, 2008, pp.
349–358.

[27] C. Rosas, J. Giménez, and J. Labarta, “Scalability prediction for
fundamental performance factors,” Supercomputing frontiers and in-

novations, vol. 1, no. 2, 2014.
[28] T. Mattson and G. Henry, “An Overview of the Intel TFLOPS

Supercomputer,” Intel Technology Journal, vol. 2, no. 1, 1998.
[29] N. R. Adiga, G. Almási, G. S. Almasi, Y. Aridor, R. Barik et al.,

“An overview of the BlueGene/L supercomputer,” in ACM/IEEE 2002

Conference on Supercomputing. IEEE Computer Society, 2002.
[30] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn et al.,

“Early evaluation of IBM BlueGene/P,” in Proceedings of the 2008

ACM/IEEE conference on Supercomputing, ser. SC ’08. Piscataway,
NJ, USA: IEEE Press, 2008, pp. 23:1–23:12.

[31] IBM Systems and Technology, “IBM System Blue Gene/Q Data
Sheet,” November 2011.

[32] M. Warren, E. Weigle, and W. Feng, “High-density computing: A
240-processor Beowulf in one cubic meter,” in Supercomputing,

ACM/IEEE 2002 Conference. IEEE, 2002, pp. 61–61.
[33] H. Nakashima, H. Nakamura, M. Sato, T. Boku, S. Matsuoka et al.,

“Megaproto: 1 TFlops/10kW rack is feasible even with only com-
modity technology,” in Proceedings of the ACM/IEEE SC 2005

Conference on Supercomputing. IEEE, 2005.
[34] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and

I. Moraru, “Energy-efficient cluster computing with fawn: Workloads
and implications,” in Proceedings of the 1st International Conference

on Energy-Efficient Computing and Networking. ACM, 2010, pp.
195–204.

[35] K. Fürlinger, C. Klausecker, and D. Kranzlmüller, “Towards energy
efficient parallel computing on consumer electronic devices,” in In-

formation and Communication on Technology for the Fight against

Global Warming. Springer, 2011, pp. 1–9.
[36] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez,

“Tibidabo: Making the case for an ARM-based HPC system,” Future

Generation Computer Systems, vol. 36, pp. 322–334, 2014.
[37] Applied Micro, “APM “X-Gene” Launch Press Briefing,”

https://web.archive.org/web/20120813151248/http://www.apm.
com/global/x-gene/docs/X-GeneOverview.pdf, 2012.

[38] Cavium, “ThunderXTM,” https://web.archive.org/web/
20160310114848/http://www.cavium.com/pdfFiles/ThunderX
PB p12 Rev1.pdf, 2013.

[39] PCWorld, “Qualcomm enters server CPU market with 24-
core ARM chip,” http://www.pcworld.com/article/2990868/
qualcomm-enters-server-cpu-market-with-24-core-arm-chip.html,
2015.

[40] Charles Zhang, Phytium Technology Co., Ltd,
“Mars: A 64-core ARMv8 Processor,” http://www.
hotchips.org/wp-content/uploads/hc archives/hc27/HC27.
24-Monday-Epub/HC27.24.30-HP-Cloud-Comm-Epub/HC27.
24.321-64core-Zhang-phytium-v1.0.pdf, 2015.

[41] D. Abdurachmanov, B. Bockelman, P. Elmer, G. Eulisse, R. Knight,
and S. Muzaffar, “Heterogeneous high throughput scientific comput-
ing with apm x-gene and intel xeon phi,” in Journal of Physics:

Conference Series, vol. 608, no. 1. IOP Publishing, 2015, p. 012033.
[42] Data Center Knowledge, “PayPal Deploys ARM Servers in Data

Centers,” http://www.datacenterknowledge.com/archives/2015/04/29/
paypal-deploys-arm-servers-in-data-centers/, 2015.

[43] D. Cepulis, “ISC16 Recap - Fujitsu Takes the Stage,”
https://community.arm.com/groups/processors/blog/2016/06/27/
isc16-recap-fujitsu-takes-the-stage.

[44] M. Garcia, J. Corbalan, and J. Labarta, “Lewi: A runtime balancing
algorithm for nested parallelism,” in 2009 International Conference

on Parallel Processing. IEEE, 2009, pp. 526–533.

455

